
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Interpretation of diffusion measurements in cholesterics
Ralf Stannariusa

a Sektion Physik der Karl-Marx-Universität, Leipzig, G.D.R

To cite this Article Stannarius, Ralf(1990) 'Interpretation of diffusion measurements in cholesterics', Liquid Crystals, 8: 3,
389 — 406
To link to this Article: DOI: 10.1080/02678299008047355
URL: http://dx.doi.org/10.1080/02678299008047355

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678299008047355
http://www.informaworld.com/terms-and-conditions-of-access.pdf


LIQUID CRYSTALS, 1990, VOL. 8, No. 3, 389-406 

Interpretation of diffusion measurements in cholesterics 

by RALF STANNARIUS 
Sektion Physik der Karl-Marx-Universitat, Leipzig DDR-7010, G.D.R. 

(Received 18 September 1989; accepted 16 February 1990) 

An interpretation of the pitch and time dependence of diffusion in the chol- 
esteric liquid crystalline phase is proposed. Experimental results on  nematics 
twisted by chiral dopands are discussed. The model predicts a decay of the 
translational diffusion coefficient D, in the helix direction with the observation 
time and a decrease of Dp with shorter pitch length po,  in accord with experiment. 
From comparison with experimental data it is concluded that rotational diffusion 
in these samples is a collective phenomenon. 

1. Introduction 
The diffusion coefficient of nematic liquid crystals is a second rank tensor with two 

independent components, D,I parallel to the direction n and D, perpendicular to n, in 
its principle axes system. Cholesteric phases, induced by the addition of a chiral 
compound to a nematic, can be considered as a stack of quasi-nematic layers with a 
continuous rotation of n along the direction of the layer normals, the helix axis, x. 
This rotation of n in an undeformed cholesteric is given by 

n = e,cos2nx/po + e2sin2nx/po, (1) 
where e,, e, are unit vectors in they and z directions. Within the quasi-nematic layers, 
we may expect similar behaviour to that of nematics, with a macroscopic averaging 
of the diffusion coefficient perpendicular to the helical axis, 

Ds = P , I  + D1)/2. 
Diffusion parallel to the pitch axis is strongly influenced by the chirality of the sample, 
and we expect the diffusion coefficient in the helix direction, Dp, to be different to D, 
of the corresponding nematic. NMR measurements of this diffusion coefficient in 
cholesterics show that, indeed, Dp does depend strongly upon the pitch p o .  The 
measured values of Dp for short po are smaller than the diffusion coefficients of 
nematics by nearly one order of magnitude [l-5,171. Several authors have proposed 
a square dependence of D, on the pitch [1,2]. A lower than quadratic dependence 
of D, on po was measured by Oehler [5] using I3C NMR. Moreover, it was found from 
proton NMR experiments that the diffusion coefficient decays with the observation 
time [3,4]. A satisfactory theoretical understanding of these effects is required. In this 
paper, we discuss the calculations of Yaniv et al. [I], leading to the prediction of a 
quadratic dependence of D, on the pitch. We propose a model of coupling between 
rotational and translational diffusion in cholesterics which is able to predict the 
measured time and pitch dependencies qualitatively. In order to test the theory 
quantitatively, more experiments and accurate data are necessary. 

Our model is valid for diffusion parallel to the helix axis. The diffusion coefficient 
perpendicular to the helix [3,6-81 has to be discussed separately. The present 
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390 R. Stannarius 

experimental data are inconsistent with the model of diffusion in quasi-nematic 
layers. 

2. Discussion of the existing theory 
Yaniv and co-workers were the first to measure the decay of the diffusion coef- 

ficient with shorter pitch length, and the first to attempt a theoretical description of 
this effect. At the beginning we reconsider the idea proposed by Yaniv et al. [ I ]  for 
an interpretation of the quadratic pitch dependence of D,, subsequently we shall 
include some refinements. In their original model, the energy dissipation per unit 
volume caused by molecular rotational motion along the helix axis is assumed to be 
yI  ( 2 ~ e i / p ~ ) ~  [16], where ‘u is the velocity of the diffusing molecule and yI is the 
rotational viscosity. The energy dissipation per molecule can be characterized by an 
expressionfd, where the friction constant f is introduced. Calculating the number of 
molecules per volume from the Avogadro constant NA, the mass density p and the 
molar mass M of the sample, we find, by comparison of both expressions, 

YI (2WPO)*  = ‘uY(N*P/M). (2) 

Therefore, the friction coefficientfcan be related to the rotational viscosity yI and the 
pitch po by 

f = M/(pNA)YI 4a2/Pi. (3) 
Now, we can make use of the well-known Einstein relation [9], that is applied [I] in 
the form 

D = Doexp(-AE/(RT)), Do = kT/f .  (4) 
Here D is equivalent to the diffusion coefficient D,. Inserting the constant f into 
equation (4), we obtain 

D = NApkTpi/(4n2y, M )  exp (- AE/(RT)). ( 5 )  

With typical values assumed for the quantities p M 1 g ~ m - ~ ,  M M 273g/mol, 
yI  = 1 gcm-I s-I, and with the experimentally determined activation energy 
AE M 32.3 kJ/mol (see figure 1) Yaniv et al. [I] computed a value for D/pi of 6.2 s- ’  
in approximate agreement with the experimental value 1.8 s-I, at room temperature, 
for 4-methoxybenzylidene-4’-n-butylaniline (MBBA). 

However, equation (4) is not correct in the form given here. At any temperature 
T, the Einstein relation should be 

D(T) = kT/f(T), (6 )  

D = NApkTpi/(4A2yI M ) .  (7) 

and hence equation ( 5 )  becomes 

Obviously the Arrhenius-like behaviour of the quantity D is already contained in the 
temperature dependence of the rotational viscosity yI . We can express this idea in a 
different way. If the relation (4) is used, then the constantfrepresents the friction at 
infinite temperature, i.e. we have to insert into equation ( 5 )  the corresponding rotational 
viscosity y l o ,  with 

YI = YloexP(AE’/(RT)- 
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Diflusion in cholesterics 39 1 

Comparing the temperature dependence of the expression Dpoc measured in [ I ]  
(c is a constant and po is nearly independent of temperature) with the curve l / y , ,  
which is calculated from the Leslie.coefficients of MBBA given by Kneppe [lo], we can 
check the good correspondence of both activation energies within the cholesteric 
temperature range; this becomes evident from figure 1. 

316 32 8 340 

Figure 1. The temperature dependence of the diffusion coefficient parallel to the helix direction, 
measured by Yaniv et al. [ 11 (open circles, dashed line) and the reciprocal of the rotational 
viscosity y ,  calculated from the Leslie coefficients given by Kneppe [lo] (full circles). 

The problem arising after the correction of equation (4 )  to equation ( 7 )  is that after 
the elimination of the exponential in this equation we have, instead of the mismatch 
with experiment by a factor of about 3, a discrepancy of the order of which is 
roughly the value of the factor exp (- AE/(RT) )  at room temperature. We now try to 
provide a simple explanation of this phenomenon. Generally, the constant f which 
enters the Einstein formula is the friction coefficient of a diffusing particle. We think 
that it is not justified to relate this diffusing particle in the experiment to a single 
molecule. For rotational motion, the diffusion processes are of a more complex 
nature. The single molecule is free only to undergo 180Ojumps about the short axes, 
relative to its neighbours, but not to perform a real dissipative rotational diffusion. 
The main contribution to the latter originates from cluster rotations, this means 
collective motion of a large number of molecules n, (about lo6). The friction constant 
fhas  to be multiplied by this factor, as the number of diffusing particles is not equal 
to the number of molecules per unit volume but rather to the amount of clusters. 
Equation (7) has to be divided by n, and can be matched to the correct order of 
magnitude. 

D = NA/n,pkTp:/(4n2y,M). (7 4 
If these cluster rotations are not included in the calculations, any friction by dissi- 
pative rotational motion is much too weak to account for the hindering of translational 
diffusion in cholesterics which is found experimentally. 

Our simple model discusseed in this section considers only the influence of energy 
dissipation by rotations coupled to translational diffusion. It neglects the influence of 
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392 R. Stannarius 

the diffusion mechanisms present in nematics. Therefore, the model is valid only in 
the range of very short pitch. At the transition to the nematic phase, po + 00, the 
diffusion coefficient according to equations (7) and (7 a) is divergent. Furthermore, 
the time dependence of the diffusion coefficient cannot be derived from this simplified 
model. The range of its applicability will be discussed later. 

In the next section, we propose a more detailed model which takes into account 
rotational as well as translational mobility. Both are coupled by the chiral phase 
structure. The model is able to predict the expected time dependence and provides a 
generalized pitch dependence of Dp. Under certain conditions, in the limits of short 
pitch and strong translational mobility, the equations of the previous approximations 
are regained. 

3. Coupling model for rotational and translational motions 
For a more accurate description of the phenomena involved in self-diffusion of 

cholesteric liquid crystals we propose an approach slightly different to that discussed 
in the previous section. At first we derive expressions connecting infinitesimal trans- 
lational and rotational diffusion steps to parameters known from the nematic phase. 
At an infinitesimal local scale, where the chiral structure is not experienced by the 
diffusing particle, we expect the cholesteric to behave like a nematic. The translational 
diffusion in regions small compared to the pitch length is assumed to be similar to that 
of the corresponding nematic. As the average orientation of the molecular long axes 
is perpendicular to the helix direction, the component DT in the x direction is equal 
to the corresponding nematic diffusion coefficient, D, . 

For the calculation of the rotational mobility about an axis perpendicular to the 
director, characterized by the angle 8, we use the procedure developed by Einstein [9] 
in his work on brownian motion. We are interested in the temporal evolution of the 
quantity (8’). The equation for the rotational motion is 

zil = -fd + r, (8) 
where I the momentum of inertia per unit volume, is the angular momentum of this 
volume, and f (= 7,) is the rotational viscosity. We multiply this equation by 20 and 
average over the sample 

21(ile) = - 2 y , ( ~ e )  + 2(8r). (9) 
At small angles 8, where the molecular field potential can still be considered constant, 
the term (Or) vanishes as r is not correlated to 8. The effects of a hindering potential 
will be included later. The first term of equation (8) can be substituted by introduction 
of the quantity 

g = ((3)) = (2de), g = (208) + (242); (10) 

zg - 21(P) + y,g = 0. (1 1) 

we obtain 

The term ( d 2 )  has to be substituted in this equation. We use the equipartition 
theorem of thermal energy. Equation (11) is multiplied by a volume V which cor- 
responds to an assumed structure (cluster) with motional freedom of rotation about 
the angle 8. We let 

I V ( 8 ’ )  = kT 
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Difusion in cholesterics 393 

and equation [ 1 1 J becomes 

IVg - 2kT + Vrlg = 0. 

From this differential equation the quantity g is derived 

g = 2 k m V y l ) ( l  - exP(-Y,t/O), 

and so 

(0’) = I,’g(r)& 

= 2kT/(VY,) { t  - I / V l V  - e X P ( - Y l ~ / m  (12)  

The exponential term is a rapidly decaying function, with a time constant T = 
I / y l  zz lO-I3s. At longer time scales, the quantity (0’) is proportional to the time t .  
We introduce the proportionality factor 2D,,  

2D,t = ( 0 ’ )  = 2kT/(Vyl )r  

and so 

D, = kT/ (VY, ) .  (13) 

This equation links the rotational viscosity yI to the evolution of the quantity (0’) 
for the substance. In the cholesteric the connection 

e(x) = 2nx/p, (14) 

between the rotation angle 0 about the helix axis and the translation x along this axis 
holds. We can calculate the diffusion coefficient in the direction of the helix axis, 

and regain an equation equivalent to (7 a). 
We have already given a physical interpretation of the volume V,  appearing in 

( 1  3). If we connect it with the volume corresponding to one molecule, then D ,  would 
be much too large to effect a hindering of the translational diffusion in cholesterics. 
Hence V may be considered as the volume of a molecular cluster, i.e. the volume 
occupied by a number of molecules which perform collective rotational motions. The 
coefficient D ,  in equation (13) describes the evolution of (0’) in time, as long as the 
rotational mobility is not hindered by a potential, e.g. of elastic, electromagnetic or 
intermolecular dispersive forces. We shall not discuss here the nature of this potential, 
since it depends upon the choice of size of the diffusing particle. It is clear that in the 
nematic phase free rotational diffusion is impossible, hindering forces result, e.g. from 
the Maier-Saupe potential for single molecules, and from the elastic deformation 
energy for whole clusters of molecules. The effect of such a potential on diffusion is 
now discussed. 

We introduce a potential W which is a minimum at the orientation 8, = 0. A 
diffusing particle rotating into another orientation will experience a restoring force 
towards 0, = 0. The phase symmetry requires that 

w(e) = ~ ( - 8 )  = w(n - 0); 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



394 R. Stannarius 

Figure 2. Schematic picture of the potential W in the (x, 0) plane. 

we assume a cosine potential as a useful approximation. In cholesterics, the simplest 
expression for W is that of a cosine potential with the minimum valley twisted along 
the helix, following the local director orientation 

W = -4 ,kT~0~(4nx/p ,  - 28). (16) 

Because of this potential rotational and translational motions are coupled to each 
other. Any motion in the two dimensional (x, 8) space will be influenced by W(x, 8).  
With 4, sufficiently large ( %  l),  the equilibrium distribution in this potential is 
responsible for the helical arrangement of the molelcular orientations. For a very 
steep potential (40 > kT), all motions occur only along the bottom of the potential 
W, at 27rx/p0 - 8 = 0. Then we arrive again at  the condition (14) leading to 
equations ( 7 4  and (15). 

At very short measurement times, D, and DR represent the limits for the observed 
translational and rotational diffusion coefficients, respectively. If the mobility in the 
direction of one coordinate is much greater than that along the other coordinate, the 
faster of them will be slowed down by condition (14) with increasing observation time. 
The slower of both motions will not be influenced by coupling to the much faster 
motion. If both mobilities are of the same order of magnitude (DR w Dlp;/(47rZ)), 
rotational as well as translational diffusion will be reduced with increasing observation 
time. 

The quantitative calculation of diffusion in a cosine potential was performed 
numerically. We have used a statistical method. The results for the long time diffusion 
coefficient coincide with the relations found by Dianoux and Volino [ I l l  in their 
calculations of a similar problem, namely diffusion in smectic A phase; the math- 
ematical approach is contained in Appendix A. The problem of coupling two dimen- 
sional motion by the two dimensional (twisted) cosine potential in equation (16) is 
discussed in Appendix B. If the quantities DR, DT are substituted into the equations 
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Diffusion in cholesterics 395 

given there, we arrive at  the expressions 

where 

KR = 1 D ~ p ; / ( 4 7 t ’ D ~ ) .  

where Au(t) represents a function strongly dependent upon the potential barrier 
height +o. Au(t) is a decaying function of time with limits 

and 

where Zo is the modified first Bessel function of order zero. The computed shape of 
Au(t) for different potentials +o is shown in figure 3; a statistical ensemble of 10 000 
particles was used in the computations. It is obvious from equation (17) that in this 
model the hindering of diffusion by the chiral structure is intrinsically connected to 
the time dependence of the diffusion coefficient. This means that the proportionality 
factor between ( x ’ )  and the time t determined by the experiment (e.g. in field gradient 
NMR where a gaussian distribution of x - xo( t )  is assumed) decreases with the 
observation time. The corresponding decay time scale is given approximately by the 
time a particule needs, on average, to cross the potential minimum. 

At short diffusion times (Au(t) z 1) we observe undisturbed rotational and 
translational diffusion 

(18) I Au(t = 0) = 1 

Au(t + CO) = Zi2(+o), 

I l im(2(t))  = 2D,t, 

lim @’(I)) = 2DRt  
1-0 

1-0 

and the long-time behaviour for +o B 1 ( Z i 2 ( $ o )  z 0) is 
lim ( x ’ ( t ) )  = 2D,t/KT 

lim ( e 2 ( t ) )  = 2 D R t / K R .  
1-m 

1-03 

Figure 4 shows the evolution of D p  = ( x 2 ) / 2 t  in the long-time limit (see equation 
(20)) scaled by DT. 

For very slow rotational mobility DT b D,p;  we have 
KT = 47t2D,/(P;D,), KR = 1 .  

Again we find the quadratic pitch dependence of ( x ’ ) / t ,  proposed by Yaniv et al., as 
the long-time limit of equation (17) 

lim 1-03 ( $ ( t ) ) / t  = 2ORpi/(47t2). (21)  

A less than quadratic dependence of D, upon t is expected: 
( I )  If the long-time limit of equation (17) is not yet reached, which means if the 

experimental observation time is shorter than the decay time of Au(t); 

or 
(2)  if the constant DR responsible for the reorientational behaviour is not small 

compared to 47t2D,/pi. This is true in particular for very large pitch lengths p o .  
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396 R. Stannarius 

In equations (1 7), a divergence of the diffusion coefficient in the limit of large po 
is avoided. In this limit the diffusion coefficient Dp according to our model reaches the 
value D ,  of the nematic. 

The diffusion coefficient DR calculated from y ,  for single molecule rotational 
diffusion yields a value too large by about 6 to 7 orders of magnitude. Under these 
conditions would expect DR 9 4n2DT/pk with the resulting relations 

KT = I ,  K R  = D , p k / ( 4 ~ ~ D , )  

o ~ ' " ' ' ' " ' ' ' ' ' ' '  
OJ6 0.32 D,q2t/4n2 

(b) 
Figure 3. 
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0.1 6 0.32 Doq2t /4n2 
(4 

i 
\ 
\ 

0.16 0.32 Doq2 t/4n 
(d  1 

Figure 3. The time dependence of the quantity Au(r) = ( x 2 ) / ( 2 D 0 f )  for diffusion in a cosine 
potential for different potential heights, (a) 4o = 0.75, (b) 4o = 1.5, (c)  4o = 3.0 and ( d )  4o = 4.0. 

and 

1-m lim(x?(t)) = 2D,t, 

r 4 m  lim ( 0 2 ( t ) )  = 8n2/piDTt, 

in contradiction with experiment. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
4
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



398 R. Stannarius 

DL( nemat ic) 

Figure 4. The dependence of the long-time behaviour of the diffusion coefficient D, for 
#,, % 1 on the pitch length p o ;  the dotted line gives the quadratic relation D z p i .  

4. Results 
Experimental data on self diffusion of pure cholesteric liquid crystals are rare. 

Most measurements have been performed on cholesterics formed from nematics by 
adding a small amount of cholesteric substance. The typical pitch lengths in these 
experiments range from about 0.5 to 10pm. The available data show a time dependence 
of the diffusion coefficient D, in accord with our model [3,4]. Different results have 
been published on the pitch length dependence. All of the experimental D, are smaller 
than the values expected for the corresponding nematic at the same temperature. The 
*D NMR measurements of Vaz et al. [12] with cholesterics distorted by a magnetic 
field give clear evidence that the translational diffusion coefficient depends strongly 
upon the local twisting of the structure. In distorted cholesterics with a partial 
unwinding of the helix this results in a spatial modulation of the diffusion coefficient 
D,. The 'D NMR measurements of Yaniv et al. [ l ]  were performed on very short 
pitch cholesterics ( p o  < 1.3pm). In such strongly twisted samples, the condition 
DRpi/(4n2) < D, can be fulfilled. As the decay time of the quantity Au(1) is also 
proportional to the square of the pitch, we expect that the long-time limit is nearly 
reached. Then the observed quadratic pitch dependence measured by these authors is 
in accord with equation (21). 'jC NMR measurements of Oehler et af. [5,17] were 
performed on cholesteric samples with pitch lengths between about 2 and 8 pm. As 
these pitch lengths are considerably larger, conditions 1 and 2 given previously 
become effective. They prevent the observation of a quadratic pitch length dependence 
of D,. The diffusion coefficient is still a function decreasing with larger twist (shorter 
p o ) ,  but with a much less than quadratic dependence. These experimental results can 
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Diffusion in cholesterics 399 

also be interpreted within the proposed model. The results published by Luzar et al. 
[2] have already been discussed in [13], where we have shown that the I3C NMR line 
shape simulations procedure applied in [2] should be modified. 

5. Conclusions 
This paper presents an interpretation for diffusion in cholesteric liquid-crystalline 

mesophases. We have shown that our model of coupling between rotational and 
translational motions by a simple cosine potential in cholesterics is able to predict the 
effects observed in experiment. In order to determine the parameters +o, D ,  and D, 
quantitatively, the amount and accuracy of available experimental data is insufficient. 
In particular it would be desirable to have data on y ,  , D,, and D ,  of the nematic and 
the diffusion coefficients D, and D, measured in the cholesteric phase of the same 
substance for different pitch lengths. This includes the large scale investigation of the 
Dp(po,f) dependence. It could provide an exact quantitative test of the theory 
proposed here and sketches a programme for future diffusion investigations. 

From the comparison of available experimental data with the predictions of 
equations (7), (15) and (17) we conclude that the mechanisms of the rotational 
reorientations that are coupled to the translational diffusion are collective phenomena 
involving some lo6 molecules, clusters. The existence of such motions was stated 
already in Franklin [14]. 

Finally it should be stressed that this theory treats only diffusion processes in the 
helical direction, because it is this component of the diffusion tensor which is affected 
by conditions different to those of the nematic phase. Several optical mass transport 
measurements [6-81 and a 'H NMR investigation [3] have been used to determine the 
diffusion coefficient perpendicular to the helix. The observed pitch and time depen- 
dencies of these data are clearly in contradiction with a model of diffusion within 
quasi-nematic layers perpendicular to the twist axis. Further measurements and a 
thorough theoretical investigation are needed to provide a comprehensive under- 
standing of this process. ' H  NMR field gradient methods are already at their limits 
in cholesteric liquid crystals, because of the short relaxation time T2 and the slow 
diffusion compared to liquids, where field gradient methods are applied very success- 
fully. Moreover, the orientation of the sample in the magnetic field of the spectrometer 
is problematic. Most of the investigated thermotropic liquid crystals have a positive 
diamagnetic susceptibility anisotropy Ax which causes the helix axes to distribute over 
all directions perpendicular to the magnetic field. In samples containing cyclohexane 
derivates, Ax is negative but very weak and orientation is poor. If we are interested 
in the measurement of D,, we need additional electric fields to orient the helix axes 
uniformly. 

Mass transport investigations are sensitive only to D, due to the geometrical 
arrangement of the helices in the diffusion cells. It has been shown in detail [7,15] that 
the experimental conditions of mass transport methods have to be improved sub- 
stantially in order to yield reliable data. In particular, we should use the method of 
diffusion with a source of constant initial concentration of cholesteric [7]. Even then, 
the concentration profiles are very insensitive to the exact D, versus concentration (or 
D,( po))  dependence. We can measure, with good reliability, the average diffusion 
coefficient over the pitch range in the diffusion cell. It would be preferable to perform 
different experiments where in each experiment the difference between the source 
concentration and the initial concentration of cholesteric substance in the diffusion 
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400 R. Stannarius 

cell is very small. With a set of experiments covering a sufficiently large concentration 
(pitch) range, the dependence of diffusion on the pitch length of the sample could be 
gained. Preliminary experiments done in this laboratory gave no clear decision on the 
pitch dependence of D , .  These experiments will be continued and published elsewhere. 

The author acknowledges interesting and helpful discussions with Professors H. 
Schmiedel and St. Oehler. 

Appendix A 
Diffusion in a cosine potential 

The solution of the diffusion equation 

i ( x ,  t )  = a / a ~ D ~ ( a / a x c ( x ,  t )  + l/kTa W/axc(x, t ) )  ( A  1) 
for arbitrary shapes of the function W(x) cannot be found analytically. We have used 
a statistical approach to compute the quantity 

An ensemble of particles initially Boltzmann distributed along the coordinate x is 
allowed to perform discrete diffusion steps along x. The coordinate x is divided into 
discrete positions xi  with distances Ax.  Discrete time steps At and the dimensionless 
diffusion coefficient 

do = DoAt/Ax2 

are introduced. The potential has the shape 

4 = W/kT = -4oCOS(qx), 

in discrete form 

4i = - &COS ( 2 n x i / N ) .  

The number of particles in the interval ( x i  - Ax/2 ,  xi  + Ax/2 )  is ni .  Equation ( A  1) 
transforms to 

Ani = d0{ [n i+ ,  + n i - ,  - 2nil 

+[4iti - 4il[ni+l + nill2 

-14; - 4i- ,I[ni  + ni- lI /2} ,  
We did not solve equation ( A 2 )  by successive calculation of the ni at times tj but 
applied a jump model with transition probabilities for each particle between adjacent 
positions 

p ( i ) -  = p( i  -, i - 1) = do ( 1  + + A 4 i ) ,  

p ( i ) +  = p( i  --+ i + 1) = do(l - 

A4i  represents the derivative of 4 at the location x i .  

An, = p( i  + 1)-nitl + p( i  - l ) t n i - l  - M i ) -  + p ( i ) + ] n i .  ( A 4 )  

The initial distribution of the ensemble is n, = exp (- c$~). Because of the symmetry 
of the function 4 it is sufficient to limit this distribution to the interval (- N / 2 ,  N /2 ) .  
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Diffusion in cholesterics 40 1 

At each diffusion step every particle will jump from its position xi  with a probability 
p -  and p +  , respectively, to the new position x i - ,  or x i + l .  The average taken over the 
ensemble gives 

d = ((x(n) - ~ ( 0 ) ) ~ > / 2 n ,  (A 5 )  

where x(i) designates the position of a particle at  the ith time step, gives the diffusion 
coefficient in units of Ax2/At. 

We see that for 4 = constant. Equations (A 3) reduce to p -  = p +  = do. 
Then equations (A 5 )  may be transformed to 

d = +n(((xn - xn-1)’) + ( ( x n - 1  - ~0) ’ )  

+ 2((xn - xn- I )(xn- I - ~0))). (A 6) 

The last term vanishes as the direction of the last diffusion step (x, - xn-l) is 
independent of ( x n - ,  - xo) and after recursive application of equation (A 6) we find 

d = n((xl - xo)’)/2n = do, (A 7) 

As expected, the diffusion coefficient in a constant potential is time independent. 
In figure 3 we show the calculated time dependence of the observed diffusion 

constant D = dAx’/At for different potential heights 40. They were calculated 
according from equation (A 5) from an ensemble of 2 lo4 particles. The statistical 
fluctuations observed in these figures are due to the relatively small size of the number 
of particles that was chosen to minimize the calculation time. At short diffusion times 
the observed D curve starts at the value Do,  being determined by the free diffusion of 
the particles. With increasing time intervals D decays monotonously. The long-time 
diffusion coefficient approaches a limiting value which is determined by the number 
of particles which are able to pass the potential wall into the adjacent minimum of the 
cosine potential. This value D, = D(t  + co) depends strongly on 40. According to 
Volino and Dianoux [ I  11 this limiting value is 

D m  ( 4 0 )  = DO/It(40) ,  (A 8) 

with the modified Bessel function of order zero, 

Io(x)  = Jo(ix). 

At potential heights 4o % 1, equation (A8) becomes approximately = 

Figure 5 shows the dependence of D, on 4o according to the statistical calcu- 
lations (crosses) and equation (A 8) (solid line). The values calculated by the statistical 
method are in good agreement with the results of 11 I ]  which have also been determined 
empirically. 

All D ( t )  curves have the initial value D(0) = Do. The characteristic slope is 
determined by the potential 4. At t = 0 it can be approximated by the tangent 

Do exp ( -  240). 

where 

exp(~ocos(qx))cos(qx)dx exp(4,cos (qx)) dx 
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1 2 
' 1 . .  . . . . .  * .  * .  

L 

Figure 5. The dependence of the long-time behaviour D ,  in units of the free diffusion 
coefficient Do on the potential height &. 

n2/-2 I 

10 / 

Figure 6 .  The initial slope 6 of the functions D ( t )  for different 40. 
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Diffusion in cholesterics 403 

represents the average of cos (qx) over the distribution ni.  The initial decay constant 
6 is shown in figure 6 as a function of 40. At large 40( B I )  the average (cos(qx)) 
yields 1 (all particles are distributed in the vicinity of x = 0), and 

D ( t )  = Do(l - D0t4,g2/2).  

At low potentials 4o 5 1 we can use the series expansion 

D(r) = Do(l - S t ) ,  

-6  = Do$iq2( -  I + 4 i / 4  - &/48 . . .). 
The time for the establishment of the long-time limiting value is of the order of 
n2/(2Doq2). 

Appendix B 
Connection between difusive processes in two dimensions by  a twisted 

cosine potential 
In Appendix A we calculated the evolution of a statistical ensemble of particles in 

the one-dimensional cosine potential. Now we discuss the two dimensional case. 
Diffusion is described, in an x, y coordinate space. (With respect to the particular 
problem of cholesterics, x represents the spatial coordinate parallel to the helix and 
y is the rotation angle around the helix axis.) x and y are principle axes of a diffusion 
tensor D; the corresponding compositions of D are D,, and D , , ,  and the diffusion 
equation reads 

I dc(x ,y ,  t ) / d t  = d/axD,,(dc/ax + c&$/~x) 

+ a/aYD,,(ac/aY + C W J Y ) .  

The potential 4 has the form (see figure 2)  

4 = V / k T  = - ~ 0 ~ 0 ~ ( 4 n X / p o  - 2y) (A 11)  

such that i t  is invariant to a translation x' along the helix axis of the cholesteric 
structure and simultaneous rotation by an angle y' = 2nx'/p0. 

At first we perform a transformation 

X = XD-G"~, 

Y = yD,S,'l2, 

4 = - $0 cos (4nXD,ii2 /po - 2 YDi-{,2), 
dc(X,  Y ,  ryat = a/aX(ac/ax + ca$ /aX)  

+ a/a Y(ac/d Y + ca+/a Y). 

After the substitutions 

u = Xcosci - Ysinci, 

v = Xsinci + Ycosa, 

4 = -4ocos(qu), 
with 
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404 R. Stannarius 

(b )  

Figure 7.  The decay of (g(f)) and ( y z ( f ) )  for (a) D.,, = Dry = Do, Oo = 5.0, and (b)  
D,r.T = 4D,, = 4D0, Do = 5.0. 

we have collected the spatial inhomogeneity of the potential into the direction of one 
coordinate, u. We factorize the concentration c(u, v ,  t )  into 

c(u,v, 4 = c,@, M V ,  t ) ,  

a c ~ ~ ,  tyat  = a/au(ac,/au + c,a$pu),  
a+, tyat = aZc,/avZ 

and two decoupled equations 
(A 14a) 

(A 14 b)  

are obtained. 
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Diffusion in cholesterics 405 

For the quantity c, we find, with the boundary and initial conditions 
c,(v,O) = 6(v), c,( f co, t) = 0 the well-known gaussian solution 

c,(v, t )  = (4nt)-'/'exp (- vZ/(4t)), 

(v2) = 21, 

while for c,(u, t) we can use the solutions obtained in Appendix A. The numerical 
values of figures 3-6 describe the diffusional behaviour of c,(u, t) with Do = 1 and 

( 2 )  = 2Au(t)t, Au(0) = 1, AuW = Z{2(40). 
If x and y are resubstituted again, we have 

x = DiL2(ucosa + vsina), y = D,!f(-usina + vcosa), 

(A 15) 

(x2) = D,,{(u2cos2a) + (v2sin2a) + 2(uvsinacosa)} 

= D.rx{cos2a(u2) + sin2a(v2)}, 

( y 2 )  = Dyy{(uZsin2a) + (v2cos2a) - 2(uvsinacosa)} 

= Dyy{sin2a(u2) + cos2a(v2)}.  

We find the time dependences of (x2) and ( y 2 )  

where 

K, = 1 + 4n2D,,/(piDyyL 

~y = 1 + ~yypi / (4n~~. r , r j ,  

At short diffusion times the limiting values are (cf. Appendix A) 

lim(x2(t)) = 2D,t, lim(y2(t)) = 2Dyyt 
1-0 1-0 

and the long-time limits for 4o B 1 (Zi2(40) M 0) are 

lim (x2(t)) = 2Drrt/K,, lim ( y 2 ( t ) )  = 2D,,t/K,. 

Figure 7 shows the result of a statistical computation with the two-dimensional 
analogue of equations (A 2)-(A 6). The representation is the same as that of figure 3. We 
have chosen D,, = Dyy = Do, and Ox., = 4DY." = 40, as examples. 

1-m 1-m 
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